
Specifying and Reading Program Input with

NIDR

David M. Gay
Sandia National Laboratories∗, Albuquerque NM 87185, USA

March 24, 2010

Abstract

NIDR (“New Input Deck Reader”) is a facility for processing input to
large programs, such as DAKOTA, a program that facilitates uncertainty
quantification and optimization. NIDR was written to simplify mainte-
nance of DAKOTA, provide better checking of input, and allow use of
aliases in that input. While written to support DAKOTA input conven-
tions, NIDR could easily be used to control other programs. This paper
describes NIDR and explains the algorithm NIDR uses to permit relaxed
ordering of its input.

1 Introduction

DAKOTA [2, 8] is a large program with many possible behaviors, which are
controlled by an input file containing various keywords and, often, associated
numerical or string values. For example, Figure 1 shows input for solving the
Rosenbrock test problem [14] as a least-squares problem, with computation
of the least-squares residual vector done by a separate program (the “analy-
sis driver”) called “rosenbrock”. The solver (built into DAKOTA, and known
in DAKOTA parlance as a “method”) is nl2sol [4, 5], which is allowed to run
for up to 50 iterations and should stop when a suitable measure of solution qual-
ity (e.g., the relative change in the sum of squares yet possible in a quadratic
model of the problem) is less than convergence tolerance 10−4; the solver seeks
values for a vector of two “continuous design” variables whose initial value is
(–1.2, 1.0) and which must both lie in the interval [–2.0, 2.0]. The residual
vector (the sum of squares of whose components is to be minimized) has two

∗Sandia National Laboratories is a multi-program laboratory operated by Sandia Corpo-
ration, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE–AC04–94AL85000.
This manuscript (SAND2010–1791P) has been authored by a contractor of the U.S. Gov-
ernment under contract DE–AC04–94AL85000. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the published form of this contribu-
tion, or allow others to do so, for U.S. Government purposes.

1

components. The analysis driver provides the requisite first derivatives (“ana-
lytic gradients”), but no second derivatives are to be provided (“no hessians”).
Labels “x1” and “x2” will appear in the input to the “rosenbrock” program. As
illustrated in Fig. 1, DAKOTA input files can contain comments that start with
“#” and extend through the rest of the line; commas or white space can separate
keywords and values, and an equals sign (“=”) is optional between a keyword
and its associated value or values (with some keywords having no associated
values, others one or several). DAKOTA recognizes several top-level keywords
(“interface”, “method”, “model”, “responses”, “strategy”, and “variables”, not
all of which need be present, and some of which can appear more than once).
Other keywords, the choice of which depends on the top-level keyword, can fol-
low a top-level keyword, and some of these keywords, in turn, recursively enable
still other keywords to appear. In all, DAKOTA recognizes over 900 keywords.

extracted from $DDKOTA/test/dakota_rosenbrock.in
method,

nl2sol
max_iterations = 50
convergence_tolerance = 1e-4

variables,
continuous_design = 2
cdv_initial_point -1.2 1.0
cdv_lower_bounds -2.0 -2.0
cdv_upper_bounds 2.0 2.0
cdv_descriptor ’x1’ ’x2’

interface,
system
analysis_driver = ’rosenbrock’

responses,
num_least_squares_terms = 2
analytic_gradients
no_hessians

Figure 1: Sample DAKOTA input for solving a least-squares problem.

An interesting feature of DAKOTA input, to which many users have become
accustomed, is that the order of keywords given after a top-level keyword does
not matter. For a simple example, both “cumulative distribution” and “distri-
bution cumulative” have the same effect; the former seems more natural, but
the latter would be required if input were required to be well ordered, i.e., if
a lower-level keyword could only follow the keyword that enabled its presence,
with no keywords enabled by a still higher-level keyword intervening.

2

This paper is about NIDR (“New Input Deck Reader”), which was written to
simplify maintenance of DAKOTA, provide better checking of input, and allow
use of aliases in that input. This paper explains NIDR and how it works, but
this paper is not meant to provide detailed guidance to DAKOTA maintainers,
who should consult the current DAKOTA Developer’s Manual [9]. The rest of
the paper is organized as follows. Section 2 introduces NIDR and its grammar
file. Section 3 tells how NIDR parses “well-ordered” input, while Section 4
explains how NIDR turns unordered input into well-ordered input. Section 5
discusses aliases, a feature of NIDR meant to simplify input preparation. Section
6 describes a facility for sharing features common to several keywords, Section 7
summarizes some extensions, and Section 8 offers concluding remarks and gives
pointers to the NIDR source. Appendix A summarizes the NIDR grammar.

grammar file
dakota.input.nspec

nidrgen

grammar table
NIDR_keywds.H

User’s input file

nidr_parse()
(parser in dakota)

keyword
handlers

Figure 2: Overall operation of NIDR.

3

The overall operation of NIDR is illustrated in Figure 2, which mentions
relevant DAKOTA source file names. The grammar file (dakota.input.nspec)
describes the input that DAKOTA will accept. Program nidrgen, which is only
run by DAKOTA developers in response to changes in the grammar file, turns
the grammar file into a grammar table, NIDR keywds.H, that tells DAKOTA’s
input parser, nidr parse(), about the input it should accept. When DAKOTA
starts execution, nidr parse() reads the user’s input and calls keyword han-
dlers in response to the input, as specified in the grammar file. The keyword
handlers suitably build and adjust DAKOTA data structures, in effect telling
DAKOTA what to do.

2 IDR and NIDR

DAKOTA originally used a package called IDR [15] to specify and parse its
input; IDR stands for “Input Deck Reader”. Maintenance was cumbersome
(see Chapter 11 of [7]), and most error checking required manual per-keyword
coding. NIDR simplifies maintenance by reducing the manual effort needed to
modify the input specification and by automating some error checking, e.g.,
ensuring that required keywords appear, that only one of a set of alternative
keywords appears, and that values of the right sort (numeric or string) are given
for keywords that need values, with no values appearing for keywords that do
not require them.

Figure 3 shows a portion of the NIDR grammar for DAKOTA’s top-level
“responses” keyword. This portion specifies whether and how first derivatives
are to be supplied: exactly one of the four keywords:

analytic gradients
mixed gradients
no gradients
numerical gradients

must be present. Some of these (“analytic gradients” and “no gradients”) are
simple keywords with no associated values or sub-keywords. The others have
optional sub-keywords shown between square brackets ([and]), and keyword
“mixed gradients” also has two required sub-keywords:

id analytic gradients
id numerical gradients

In the grammar file, a keyword that enables other keywords and those other
keywords are all placed between parentheses (if the keyword is required) or
between square brackets (if optional). For instance, “mixed gradients” and
the keywords it enables are contained in parentheses, with “mixed gradients”
appearing immediately after the opening parenthesis.

Some of the keywords in Figure 3 have associated values, either a list of
integers denoted by INTEGERLIST or a list of floating-point numbers denoted
by REALLIST. Some keywords, such as the “convergence tolerance” in Figure 1,

4

KEYWORD responses
analytic_gradients
|
(mixed_gradients
id_analytic_gradients INTEGERLIST
id_numerical_gradients INTEGERLIST
[fd_gradient_step_size REALLIST]
[interval_type
central
| forward
]

[method_source
dakota
| vendor
]

)
| no_gradients
|
(numerical_gradients
[fd_gradient_step_size REALLIST]
[interval_type
central
| forward
]

[method_source
dakota
| vendor
]

)

Figure 3: Grammar summary (partial) for responses.

only accept a single value, which in this case would be indicated by
convergence tolerance REAL

in the grammar file. The grammar for “analysis driver” (which also appears in
Figure 1) would be “analysis driver STRING”. Some other keywords accept
a list of strings, denoted by STRINGLIST.

DAKOTA ignores case in its input keywords. For simplicity, NIDR grammar
files use lower case to introduce keywords and use reserved upper-case meta-
keywords to indicate required values and introduce aliases (see §5 below).

Figure 3 shows DAKOTA input grammar in a form that is meant to be
easy for users to understand. To control what actually happens during parsing,
NIDR grammar files specify handlers, which are routines to be called when
processing for a keyword begins (the “initial handler”) and, for a keyword that

5

introduces other keywords, when processing of contained keywords is finished
(the “final handler”, which is needed only if there are things to do that cannot
be done until all contained keywords have been seen). An argument for each
handler is usually also provided. As an example, Figure 4 shows a portion,
corresponding to Figure 3, of the actual NIDR grammar file for DAKOTA (file
dakota.input.nspec — see §8).

KEYWORD responses {N_rem3(start,0,stop)}

analytic_gradients {N_rem(lit,gradientType_analytic)}

|

(mixed_gradients {N_rem(lit,gradientType_mixed)}

id_analytic_gradients INTEGERLIST {N_rem(intL,idAnalyticGrads)}

id_numerical_gradients INTEGERLIST {N_rem(intL,idNumericalGrads)}

[fd_gradient_step_size REALLIST {N_rem(RealL,fdGradStepSize)}]

[interval_type {0}

central {N_rem(lit,intervalType_central)}

| forward {N_rem(lit,intervalType_forward)}

]

[method_source {0}

dakota {N_rem(lit,methodSource_dakota)}

| vendor {N_rem(lit,methodSource_vendor)}

]

)

| no_gradients {N_rem(lit,gradientType_none)}

|

(numerical_gradients {N_rem(lit,gradientType_numerical)}

[fd_gradient_step_size REALLIST {N_rem(RealL,fdGradStepSize)}]

[interval_type {0}

central {N_rem(lit,intervalType_central)}

| forward {N_rem(lit,intervalType_forward)}

]

[method_source {0}

dakota {N_rem(lit,methodSource_dakota)}

| vendor {N_rem(lit,methodSource_vendor)}

]

)

Figure 4: Actual grammar (partial) for responses.

Handlers and their arguments appear in braces. Up to four items may ap-
pear between the braces: the initial handler, its argument, the final handler,
and its argument, with missing items taken to be zero and, for a handler, with
zero meaning “no handler”. Most of the entities between braces in Figure 4 are
macro calls, which make the grammar file easier to read and supply abstruse
C++ syntax that would be easy to get wrong if entered manually. A few key-
words, such as “interval type” and “method source”, serve only to enable the
appearance of contained keywords and have no associated function calls, which
is indicated by “0”. The top-level “responses” keyword has both initial and final
handlers, “start” and “stop”, which the DAKOTA-specific macro N rem3 turns
into NIDRProblemDescDB::resp start and
NIDRProblemDescDB::resp stop; the former is called when processing of the

6

responses keyword begins, and in this case it allocates a data structure that
the sub-keywords manipulate.

It is instructive to examine Figure 5, which shows the implementation of the
initial handler for DAKOTA’s “responses” keyword. All the keyword handlers
in NIDR client programs have the same signature: a pointer keyname to the
keyword name, a pointer val to any associated value or values, a pointer g to a
void pointer that the handler can set if desired, and another void pointer v for
conveying details particular to this keyword.

void NIDRProblemDescDB::
resp_start(const char *keyname, Values *val, void **g, void *v)
{

if (!(*g = (void*)(new DataResponses)))
botch("new failure in resp_start");

}

Figure 5: Initial handler for DAKOTA’s responses keyword.

In the case of Figure 5, a new DataResponses object is allocated and as-
signed to *g. The g argument passed to handlers for sub-keywords points to the
DataResponses object thus allocated, so *g can act like a C++ “this” pointer
to provide access to the surrounding context. The v argument to each handler
is specified in the grammar file. Often it is a pointer to a member element
that lets the handler adjust the appropriate field in the DataResponses object.
For example, Figure 6 shows source for the keyword handler for N rem(lit,...),
which appears twelve times in Figure 4. The final handler for “responses”
(not shown) does some error checking and other postprocessing and makes the
DataResponses object available to DAKOTA.

struct
Resp_mp_lit {

String DataResponses::* sp;
const char *lit;
};

void NIDRProblemDescDB::
resp_lit(const char *keyname, Values *val, void **g, void *v)
{

(*(DataResponses**)g)->*((Resp_mp_lit*)v)->sp
= ((Resp_mp_lit*)v)->lit;

}

Figure 6: Struct Resp mp lit and a handler that uses it.

7

Figure 6 begins with the declaration of a struct used in the handler named
resp lit. The first component of the struct is a pointer to a String member of
DataResponses, and the second component provides the value that the handler
assigns to this member. The v arguments to the resp lit handler are pointers
to Resp mp lit values. Here is how some of these values are declared:

#define MP2(x,y) resp_mp_##x##_##y = {&DataResponses::x,#y}
static Resp_mp_lit

MP2(gradientType,analytic),
MP2(gradientType,mixed),
MP2(gradientType,none),
MP2(gradientType,numerical),
// ...

When a new String-valued member is added to DataResponses, one must
simply add a corresponding line to the grammar file and to the above list of
Resp mp lit values.

The N rem macro used many times in Figure 4 is given by

#define N rem(x,y) NIDRProblemDescDB::resp ##x,&resp mp ##y

For example, MP2(gradientType,analytic) expands to

resp mp gradientType analytic = {&DataResponses::gradientType,"analytic"}

and N rem(lit,gradientType analytic) expands to

NIDRProblemDescDB::resp lit,&resp mp analytic

3 Table-driven Parsing

While inspired by the well known Unix tools lex and yacc, which let one specify
code to be executed in response to indicated input, the way of specifying rou-
tines to be called with NIDR is sufficiently restricted that a simple table-driven
parser can process input in client programs (like DAKOTA). (Lex and yacc
are described many places; see, e.g., [11, 12, 16] for some pointers.) A parser-
generator, nidrgen (itself a lex program), turns an NIDR grammar file into data
structures for the NIDR parser in client programs. Figure 7, for instance, shows
a few of the (nearly 1200) lines that nidrgen produces for DAKOTA.

Some KeyWord components enable the NIDR parser to provide error messages
if more than one keyword in a set of alternatives appears, or if a required keyword
fails to appear.

Parsing well-ordered input is straightforward. (Section 4 discusses an al-
gorithm for well-ordering the input.) To get things started, nidrgen emits a
KeyWord declaration with a fixed name for the top-level keywords, such as

KeyWord Dakota Keyword Top = "KeywordTop",0,6,0,0,Dakota::kw 186;

8

static KeyWord

//...

kw_154[15] = {

{"analytic_gradients",0,0,1,1,0,N_rem(lit,gradientType_analytic)},

{"analytic_hessians",0,0,2,2,0,N_rem(lit,hessianType_analytic)},

{"descriptors",7,0,5,0,0,N_rem(strL,responseLabels)},

{"id_responses",3,0,4,0,0,N_rem(str,idResponses)},

{"mixed_gradients",0,5,1,1,kw_137,N_rem(lit,gradientType_mixed)},

// ...

},

//...

kw_186[6] = {

{"interface",0,10,1,1,kw_8,N_ifm3(start,0,stop)},

{"method",0,52,2,2,kw_111,N_mdm3(start,0,stop)},

{"model",0,6,3,3,kw_134,N_mom3(start,0,stop)},

{"responses",0,15,4,4,kw_154,N_rem3(start,0,stop)},

{"strategy",0,9,5,5,kw_165,NIDRProblemDescDB::strategy_start},

{"variables",0,19,6,6,kw_185,N_vam3(start,0,stop)}

};

Figure 7: Sample of nidrgen output used in DAKOTA.

The basic NIDR parser maintains a stack of open keywords, which initially
contains just an entry for the top-level keywords. When it sees a keyword
that itself contains sub-keywords (such as “responses” or “mixed gradients” in
Figure 7), it adds an entry for the keyword to the top of the stack and, if
present, calls the keyword’s initial handler. When a keyword comes along that
is not found among the sub-keywords of the keyword on top of the stack but is
found lower down, the final handlers (if present) of top-of-stack keywords are
called and the stack popped until the new keyword appears among the sub-
keywords of the keyword at the stack top. Nidrgen has sorted each keyword’s
array of sub-keywords to permit binary searching of the sub-keywords (with
inexact matching, as discussed below). The initial handler is called after any
associated numeric or string values have been read, and such values are passed
to the initial handler in its val argument.

4 Algorithm to Reorder Inputs

The NIDR parser, like its IDR predecessor, requires all keywords that pertain
to a top-level keyword to follow that keyword and precede the next top-level
keyword. (The original IDR required input for each top-level keyword to appear
on one logical line, which meant one had to put backslashes at the end of physical
lines when breaking a long logical line into several more manageable physical
lines. For DAKOTA, we removed the requirement to use backslashes by treating
the top-level keywords as reserved.)

To remove any need for special ordering of the lower-level keywords con-
nected with a top-level keyword, the NIDR parser proceeds as follows. It main-
tains an AVL tree [1] of keywords that are reachable so far and of keywords

9

that have been seen but are not yet reachable. (At first the NIDR parser used
a hash table for this purpose, but DAKOTA allows one to abbreviate keywords.
Use of an AVL tree permits inexact matching with searches that run in time
proportional to the logarithm of the number of entries in the tree.) When it
sees a reachable keyword, the NIDR parser attaches it to a list of keywords
to be processed once processing of the containing keyword begins. If a newly
found reachable keyword has associated sub-keywords, the sub-keywords are
added to the AVL tree, and any hitherto unreachable keywords that match the
new sub-keywords are added to the lists of keywords to be processed with those
sub-keywords. In addition to appearing in the AVL tree, unreachable keywords
are kept in a doubly-linked list of unreachable keywords, so when a keyword
becomes reachable, it can be removed from the list of unreachable keywords
in O(1) time. At the end of input, or when the next top-level keyword comes
along, any keywords still in the list of unreachable keywords are reported as
unknown.

5 Aliases

DAKOTA recognizes many classes of “variables”, including

continuous_design
continuous_state
discrete_design
discrete_state

and many kinds of “uncertain” variables. Most have associated “descriptors”
(string values) and bounds and often other quantities. With IDR, each such
entity had to have its own unique name, e.g.,

cdv_descriptors
cdv_lower_bounds
cdv_upper_bounds
csv_descriptors
csv_lower_bounds
csv_upper_bounds

for “continuous design” and “continuous state” variables. NIDR allows each
keyword to have one or more “aliases”, which are alternate names that are
treated the same as the original keyword. For instance, lines of the form

10

[continuous_design INTEGER {...}
[cdv_descriptors ALIAS descriptors STRINGLIST {...}]
[cdv_lower_bounds ALIAS lower_bounds REALLIST {...}]
[cdv_upper_bounds ALIAS upper_bounds REALLIST {...}]
]

[continuous_state INTEGER {...}
[csv_descriptors ALIAS descriptors STRINGLIST {...}]
[csv_lower_bounds ALIAS lower_bounds REALLIST {...}]
[csv_upper_bounds ALIAS upper_bounds REALLIST {...}]
]

in the grammar file allow use of the same aliases (where appropriate) for all the
various classes of variables, which should allow simpler preparation of DAKOTA
input files. For example, Figure 8 shows a portion of DAKOTA input [13]
that was prepared before aliases could be used, followed by the same portion
rewritten to use aliases.

6 Nesting with Multiple Left Parentheses

Many DAKOTA “methods” (i.e., solvers) share keywords. Originally with
NIDR (and IDR) it was necessary to repeatedly specify such keywords. By
generalizing the NIDR grammar to permit multiple left parentheses to be adja-
cent, we permit “factoring out” some common keywords. The general idea is to
permit changing

(a b e f)
|
(c d e f)

into

((a b) | (c d) e f)

For example, Figure 9 shows a small portion of the grammar for DAKOTA with
a common keyword, actual model pointer, factored out.

Among other things, nidrgen can pretty-print its input; the text in Fig-
ure 9 was pretty-printed this way, with an option to remove the {...} notation
for function calls. As a debugging aid, the pretty printing can also expand
factored keywords to a form with no adjacent left parenthesis. This is useful
when manually changing the grammar file to factor common elements out; the
corresponding expanded, pretty-printed output should not change.

7 Extensions for DAKOTA 5.0 and Jaguar

In preparing the 5.0 release of DAKOTA [3], we found it convenient to ex-
tend NIDR in several ways, such as allowing the grammar specification to give

11

Without aliases:
normal_uncertain = 2

nuv_means = 30. 500000.

nuv_std_deviations = 10. 50000.

nuv_descriptor = ’F0’ ’P1’

lognormal_uncertain = 4

lnuv_means = 300. 20. 300. 400.

lnuv_std_deviations = 3. 2. 5. 35.

lnuv_descriptor = ’B’ ’D’ ’H’ ’Fs’

gumbel_uncertain = 2

guuv_alphas = 1.4250554e-5 1.4250554e-5

guuv_betas = 559496.31 559496.31

guuv_descriptor = ’P2’ ’P3’

weibull_uncertain = 1

wuv_alphas = 5.7974

wuv_betas = 22679.4777

wuv_descriptor = ’E’

With aliases:
normal_uncertain = 2

means = 30. 500000.

std_deviations = 10. 50000.

descriptor = ’F0’ ’P1’

lognormal_uncertain = 4

means = 300. 20. 300. 400.

std_deviations = 3. 2. 5. 35.

descriptor = ’B’ ’D’ ’H’ ’Fs’

gumbel_uncertain = 2

alphas = 1.4250554e-5 1.4250554e-5

betas = 559496.31 559496.31

descriptor = ’P2’ ’P3’

weibull_uncertain = 1

alphas = 5.7974

betas = 22679.4777

descriptor = ’E’

Figure 8: DAKOTA input [13] without and with aliases.

bounds on numeric values and allowing default values to be given, with the op-
tion of defining preprocessor symbols to associate names with default values, so
the names can appear in DAKOTA source code instead of hard-coded numeric
values. Thus default values can be changed just by editing the grammar file,
automatically regnerating derived files, and recompiling.

Associated with the 5.0 release of DAKOTA is a graphical user interface
called Jaguar [10]. Jaguar 1.0 appeared with DAKOTA 4.0 and was hard to
maintain. A major rewrite of Jaguar was associated with DAKOTA 5.0, giv-
ing Jaguar 2.0, which is based on Eclipse [6]. For ease of maintenance, we
extended NIDR to generate a grammar description for Jaguar that is aug-
mented with display hints, URLs documenting various keywords, and short
descriptions. This extra information is not used by DAKOTA itself, and we
found it convenient to convey the extra information to nidrgen in a separate
file (called $DAKOTA/src/dakota.input.desc in the DAKOTA source). Brian

12

((local
taylor_series
)

|
(multipoint
tana
)

actual_model_pointer STRING
)

Figure 9: Some factoring of keywords.

Adams wrote a script to extract material for the “.desc” file from DAKOTA
documentation sources. Items in this file are connected with entries in the
grammar specification file by “TAG” names. TAG names can appear in both
files, but we found it convenient to assume default TAG values in the grammar
specification file, obtained by concatenating keyword names and slashes, as in
“interface/analysis drivers/fork”.

Conventionally, several new keywords and associated values can appear in
the “.desc” file. Jaguar displays all keywords together that have the same
GROUP string value. A DESC string provides a short description and, option-
ally, a URL for more details. A LEN specification gives the name of a keyword
whose associated value is the number of items that should appear in a list (e.g.,
of descriptors, bounds, or starting values); variant LEN1 means a single value
is an acceptable alternative that causes all items in a list to have that value.

Jaguar reads and writes conventional DAKOTA input files. When reading,
it requires well-ordered input. We used NIDR facilities to make a program,
dakreorder, that well-orders an input file. One issue for maintenance is that
dakreorder has a DAKOTA grammar specification compiled into it, which
means it needs to be recompiled when the input grammar is extended or modi-
fied. This led us to create a variant of dakreorder called dakreord that reads
a grammar specification summary, which nidrgen can now write. Now when
Jaguar starts up, it looks to see if there is an updated grammar specification file
— one newer than the current specification summary file. If so, it transparently
runs nidrgen to obtain an updated specification summary. Thus as DAKOTA
development continues, Jaguar automatically adapts.

8 Conclusion

NIDR appeared with Version 4.1 of DAKOTA. Preliminary experience in this
context is favorable. The NIDR parser is smaller than its IDR predecessor, but
provides more error checking and simplifies maintenance. For DAKOTA users,
the chance to use aliases should simplify input preparation. NIDR could easily
be used by other programs.

13

In the DAKOTA source (see [2]), source for nidrgen appears in directory
Dakota/packages/nidr. The other files relevant to NIDR appear in directory
Dakota/src: the grammar file is called dakota.input.nspec; nidrgen reads this
grammar file and writes file NIDR keywds.H; source for the NIDR parser is files
nidr.c and nidr.h. Dakota-specific code appears in NIDRProblemDescDB.H
and NIDRProblemDescDB.C. The latter #includes NIDR keywds.H and invokes
nidr parse(parser), in which parser is a character string possibly given by
command-line option --parser to DAKOTA: the default is “nidr”; specify-
ing “nidrstrict” turns off the well-ordering algorithm, and “nidr:filename”
causes the input to be written to filename after it has been well ordered. Exten-
sions to NIDR occasioned by work on the DAKOTA 5.0 release and an associated
major revision of the Jaguar GUI for DAKOTA now make it possible for Jaguar
to adapt automatically to ongoing DAKOTA development.
Acknowledgment. I thank Brian Adams and Laura Swiler for helpful comments on the

manuscript.

References

[1] http://www.nist.gov/dads/HTML/avltree.html.

[2] http://www.cs.sandia.gov/DAKOTA/.

[3] http://www.cs.sandia.gov/DAKOTA/release notes.html.

[4] J. E. Dennis, D. M. Gay, and R. E. Welsch. ALGORITHM 573: NL2SOL–
an adaptive nonlinear least-squares algorithm. ACM Trans. Math. Soft-
ware, 7:369–383, 1981.

[5] DAKOTA uses PORT versions of NL2SOL; see http://www.netlib.org/
port/readme or http://netlib.sandia.gov/port/readme.gz.

[6] http://www.eclipse.org/.

[7] Michael S. Eldred et al. DAKOTA, a multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: Version 4.0 developers manual. Re-
port SAND2006-0456, Sandia National Laboratories, 2006. http://www.
cs.sandia.gov/DAKOTA/licensing/release/Developers4.0.pdf.

[8] Michael S. Eldred et al. DAKOTA, a multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: Version 4.1 developers manual. Re-
port SAND2006-6337, Sandia National Laboratories, 2007. http://www.
cs.sandia.gov/DAKOTA/licensing/release/Users4.1.pdf.

[9] Michael S. Eldred et al. DAKOTA, a multilevel parallel object-oriented
framework for design optimization, parameter estimation, uncertainty
quantification, and sensitivity analysis: Version 4.1+ developers manual.

14

Version of the day (votd), Sandia National Laboratories, 2008. http:
//www.cs.sandia.gov/DAKOTA/licensing/votd/html-dev/index.html.

[10] http://www.cs.sandia.gov/dakota/licensing/download jaguar 2 0.
html.

[11] http://en.wikipedia.org/wiki/Lex programming tool.

[12] The lex and yacc page. http://dinosaur.compilertools.net/.

[13] File Dakota/test/dakota rbdo steel column.in in source distribution
file Dakota 4 1.src.tar.gz, available from http://www.cs.sandia.gov/
DAKOTA/.

[14] H. H. Rosenbrock. An automatic method for finding the greatest or least
value of a function. Computer J., 3:175–184, 1960.

[15] Joe R. Weatherby, James A. Schutt, James S. Peery, and Roy E. Hogan.
Delta: An object-oriented finite element code architecture for massively
parallel computers. Report SAND96-0473, Sandia National Laboratories,
1996.

[16] http://en.wikipedia.org/wiki/Yacc.

9 Appendix A: Summary of NIDR Grammar

It may be helpful to see a summary of the grammar accepted by nidrgen,
the NIDR parse-table generator. An informal summary appears in Figures 10
and 11, with grammatical elements in italics, optional elements subscripted
by opt, and alternatives appearing on separate lines. One possibility for a
keywordname, for instance, is identifier ALIAS identifier. An identifier is a
sequence of lower-case letters, digits, and underscores that starts with a letter.
An hstring is a sequence of most printable characters other than braces and
describes a keyword handler, its argument, or sequence thereof, and hstring1−4

means one to four hstrings appearing on successive lines. Reserved words are in
UPPER-CASE. Special characters appear between single quotes (such as ‘(’ and
‘)’ for left and right parentheses.) The last grammatical element, nidrgen-input,
is what nidrgen reads.

15

keywordname :
identifier
keywordname ALIAS identifier

type :
INTEGER
REAL
STRING
INTEGERLIST
REALLIST
STRINGLIST

action :
‘{’ hstring1−4 ‘}’

tag :
TAG quoted string

group :
GROUP quoted string

desc :
DESC quoted string

len :
LEN identifier
LEN1 identifier

default val :
:= defnameopt number
:= defnameopt quoted string

bound :
≥ number
> number
< number
≤ number

optional item :
type
action
tag
group
desc
len
default val
bound

Figure 10: Summary of nidrgen input grammar (part 1).

16

optional items :
optional item
optional items optional item

simplekeyword :
keywordname optional itemsopt

initialkeyword :
simplekeyword
reqkeywordlist
initialkeyword ‘|’ simplekeyword
initialkeyword ‘|’ reqkeywordlist

reqkeywordlist :
‘(’ initialkeyword keywordlistopt ‘)’

optkeywordlist :
‘[’ initialkeyword keywordlistopt ‘]’

keyword :
initialkeyword
reqkeywordlist
optkeywordlist

keywordlist :
keyword
keywordlist keyword

toplevel-keyword :
KEYWORD simplekeyword keywordlistopt

nidrgen-input :
toplevel-keyword
nidrgen-input ‘;’
nidrgen-input toplevel-keyword

Figure 11: Summary of nidrgen input grammar (part 2).

17

